

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Chloro-7,8,9,10-tetrahydrocyclohepta-[b]indol-6(5H)-one

R. Archana,^a E. Yamuna,^b K. J. Rajendra Prasad,^b A. Thiruvalluvar,^a* R. J. Butcher,^c Sushil K. Gupta^d and Sema Öztürk Yildirim^{e,f}

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^dSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, MP, India, ^eChemistry Department, Howard University, Washington, DC 20059, USA, and ^fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 18 May 2012; accepted 19 May 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.096; data-to-parameter ratio = 15.3.

In the title molecule, $C_{13}H_{12}$ ClNO, the dihedral angle between the benzene and pyrrole rings is $1.38 (9)^{\circ}$. The cycloheptene ring adopts a distorted twist chair and sofa conformation. Intermolecular N-H···O hydrogen bonds form an $R_2^2(10)$ loop in the crystal packing. Further, weak C-H···O and C- $H \cdot \cdot \pi$ (involving the benzene ring) interactions are found in the crystal structure.

Related literature

For the biological activity of indole derivatives, see: Gribble (2000); Knölker & Reddy (2002); Kawasaki & Higuchi (2005); Bennasar et al. (1993): Hong et al. (2006): Lacoume et al. (1972); Joseph et al. (1998, 2000). For related crystallographic studies of cyclohept[b]indoles, see: Archana et al. (2010, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

b = 6.3798 (2) Å

c = 14.4513 (5) Å

V = 1071.49 (6) Å³

 $\beta = 92.767 (3)^{\circ}$

Experimental

Crystal data

C ₁₃ H ₁₂ ClNO	
$M_r = 233.69$	
Monoclinic, $P2_1/n$	
a = 11.6354 (4) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 0.33 \text{ mm}^{-1}$

Data collection

Agilent Xcalibur Ruby Gemini	4977 measured reflections
diffractometer	2274 independent reflections
Absorption correction: multi-scan	1836 reflections with $I > 2\sigma(I)$
CrysAlis PRO (Agilent, 2011)	$R_{\rm int} = 0.026$
$T_{\min} = 0.879, \ T_{\max} = 0.907$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.096$ S = 1.042274 reflections 149 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1-C4,C4A,C10B ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N5-H5\cdotsO6^{i}$ $C9-H9A\cdotsO6^{ii}$ $C7-H7A\cdots Cg2^{iii}$	0.837 (19)	2.13 (2)	2.904 (2)	153.2 (19)
	0.99	2.55	3.228 (2)	125
	0.99	2.95	3.7969 (19)	144

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x + 1, -y, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5099).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882.
- Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1325.
- Bennasar, M.-L., Vidal, B. & Bosch, J. (1993). J. Am. Chem. Soc. 115, 5340-5341.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gribble, G. W. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1045-1075.
- Hong, B.-C., Jiang, Y.-F., Chang, Y.-L. & Lee, S.-J. (2006). J. Chin. Chem. Soc. 53, 647-662.
- Joseph, B., Alagille, D., Mérour, J.-Y. & Léonce, S. (2000). Chem. Pharm. Bull. 48, 1872-1876.
- Joseph, B., Cornec, O. & Mérour, J.-Y. (1998). Tetrahedron, 54, 7765-7776.
- Kawasaki, T. & Higuchi, K. (2005). Nat. Prod. Rep. 22, 761-793.
- Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4428.
- Lacoume, B., Milcent, G. & Olivier, A. (1972). Tetrahedron, 28, 667-674.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

H atoms treated by a mixture of

independent and constrained

 $0.40 \times 0.30 \times 0.30$ mm

T = 150 K

refinement $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

supplementary materials

Acta Cryst. (2012). E68, o1887 [doi:10.1107/S1600536812022945]

2-Chloro-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one

R. Archana, E. Yamuna, K. J. Rajendra Prasad, A. Thiruvalluvar, R. J. Butcher, Sushil K. Gupta and Sema Öztürk Yildirim

Comment

An indole nucleus coupled with prenylated indoles, carbazoles, indoloquinoline and cyclohept[*b*]indole alkaloids show high levels of biological activities including anti-fungal, anti-bacterial, anti-tumour and anti-HIV activities, as well as DNA interaction properties (Gribble, 2000; Knölker & Reddy, 2002; Kawasaki & Higuchi, 2005; Bennasar *et al.*, 1993; Hong *et al.*, 2006; Lacoume *et al.*, 1972; Joseph *et al.*, 1998; Joseph *et al.*, 2000). Recently, we reported related crystallographic studies for some cyclohept[*b*]indoles from our laboratory (Archana *et al.*, 2010; Archana *et al.*, 2011).

In the title molecule, Fig. 1, the dihedral angle between the benzene and pyrrole rings is 1.38 (9)°. The cycloheptene ring adopts a distorted twist chair and sofa conformation. Intermolecular N5—H5…O6 hydrogen bonds form a $R^2_2(10)$ (Bernstein *et al.*, 1995) rings in the crystal structure. A weak C9—H9A…O6 intermolecular hydrogen bond along with a C7—H7A… π interaction, involving the benzene (C1–C4,C4A,C10B) ring, are also found in the crystal structure, Fig. 2 and Table 1.

Experimental

A solution of 2-(2-(4-chlorophenyl)hydrazono)cycloheptanone (0.486 g, 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398 K for 2 h. The contents were then cooled and poured onto cold water with stirring. The brown solid which was separated by passing through a column of silica gel and eluted with (98:2, ν/ν) petroleum ether-ethyl acetate mixture yielded the title compound (0.167 g, 72%). This was recrystallized from ethanol.

Refinement

The N—H atom was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95-0.99 Å and $U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The crystal structure of (I), viewed down the *b* axis, showing the formation of a $R^2_2(10)$ ring by N—H···O hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

2-Chloro-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one

Crystal data

C₁₃H₁₂ClNO $M_r = 233.69$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.6354 (4) Å b = 6.3798 (2) Å c = 14.4513 (5) Å $\beta = 92.767$ (3)° V = 1071.49 (6) Å³ Z = 4

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm⁻¹ ω scans Absorption correction: multi-scan *CrysAlis PRO* (Agilent, 2011) $T_{min} = 0.879, T_{max} = 0.907$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
2274 reflections	and constrained refinement
149 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 0.4689P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

F(000) = 488

 $\theta = 3.2 - 28.4^{\circ}$

 $\mu = 0.33 \text{ mm}^{-1}$

Block, colourless

 $0.40 \times 0.30 \times 0.30$ mm

4977 measured reflections

 $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$

2274 independent reflections

1836 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.026$

 $h = -14 \rightarrow 15$

 $l = -12 \rightarrow 19$

 $k = -8 \rightarrow 7$

 $D_{\rm x} = 1.449 \text{ Mg m}^{-3}$ Melting point: 389 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2495 reflections

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A	$Å^2$?)
--	-------	----

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C12	0.59361 (4)	-0.24239 (8)	0.08648 (3)	0.0357 (2)	
O6	0.57812 (10)	0.3697 (2)	0.60006 (8)	0.0280 (4)	
N5	0.56976 (12)	0.2648 (3)	0.42004 (10)	0.0225 (5)	
C1	0.63668 (14)	-0.1524 (3)	0.26774 (12)	0.0244 (5)	

C2	0.58717 (14)	-0.0838 (3)	0.18511 (12)	0.0262 (5)
C3	0.53084 (14)	0.1108 (3)	0.17503 (12)	0.0275 (6)
C4	0.52189 (15)	0.2416 (3)	0.24985 (12)	0.0256 (5)
C4A	0.56937 (14)	0.1720 (3)	0.33521 (12)	0.0223 (5)
C5A	0.62720 (14)	0.1378 (3)	0.48468 (11)	0.0211 (5)
C6	0.63461 (14)	0.2152 (3)	0.58029 (12)	0.0229 (5)
C7	0.71201 (15)	0.1148 (3)	0.65476 (12)	0.0273 (5)
C8	0.80230 (15)	-0.0440 (3)	0.62766 (12)	0.0258 (5)
C9	0.75353 (15)	-0.2421 (3)	0.58213 (12)	0.0254 (5)
C10	0.73457 (16)	-0.2246 (3)	0.47726 (12)	0.0254 (5)
C10A	0.66477 (13)	-0.0419 (3)	0.44109 (12)	0.0214 (5)
C10B	0.62718 (14)	-0.0218 (3)	0.34549 (12)	0.0220 (5)
H1	0.67583	-0.28293	0.27228	0.0293*
H3	0.49882	0.15197	0.11609	0.0330*
H4	0.48492	0.37398	0.24388	0.0307*
Н5	0.5389 (17)	0.380 (3)	0.4311 (14)	0.031 (6)*
H7A	0.66192	0.04481	0.69880	0.0328*
H7B	0.75270	0.22911	0.68916	0.0328*
H8A	0.85431	0.02420	0.58455	0.0309*
H8B	0.84908	-0.08411	0.68393	0.0309*
H9A	0.67922	-0.27558	0.60929	0.0305*
H9B	0.80688	-0.35980	0.59647	0.0305*
H10A	0.81089	-0.21821	0.44992	0.0305*
H10B	0.69653	-0.35477	0.45448	0.0305*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0376 (3)	0.0460 (3)	0.0233 (2)	0.0078 (2)	0.0001 (2)	-0.0094 (2)
06	0.0322 (7)	0.0244 (7)	0.0275 (7)	0.0012 (5)	0.0032 (5)	-0.0036 (6)
N5	0.0242 (8)	0.0205 (8)	0.0229 (8)	0.0027 (7)	0.0009 (6)	-0.0004 (7)
C1	0.0213 (8)	0.0259 (9)	0.0261 (9)	0.0005 (8)	0.0008 (7)	-0.0003 (8)
C2	0.0241 (9)	0.0336 (10)	0.0209 (9)	-0.0007 (8)	0.0026 (7)	-0.0058 (8)
C3	0.0219 (9)	0.0382 (11)	0.0222 (9)	0.0016 (8)	0.0002 (7)	0.0042 (8)
C4	0.0231 (8)	0.0269 (10)	0.0267 (9)	0.0039 (8)	0.0013 (7)	0.0035 (8)
C4A	0.0182 (8)	0.0245 (9)	0.0242 (9)	-0.0027 (7)	0.0016 (7)	-0.0005 (8)
C5A	0.0187 (8)	0.0209 (9)	0.0235 (8)	-0.0033 (7)	0.0003 (6)	0.0007 (7)
C6	0.0224 (8)	0.0220 (9)	0.0245 (9)	-0.0069 (7)	0.0031 (7)	-0.0008(7)
C7	0.0322 (9)	0.0287 (10)	0.0208 (9)	-0.0034 (8)	-0.0011 (7)	0.0004 (8)
C8	0.0255 (9)	0.0280 (10)	0.0234 (9)	-0.0028 (8)	-0.0037 (7)	0.0025 (8)
C9	0.0259 (9)	0.0229 (9)	0.0269 (9)	0.0003 (7)	-0.0039 (8)	0.0035 (8)
C10	0.0272 (9)	0.0222 (9)	0.0265 (9)	0.0021 (7)	-0.0023 (7)	-0.0013 (8)
C10A	0.0175 (8)	0.0236 (9)	0.0230 (9)	-0.0036 (7)	0.0005 (6)	-0.0005 (7)
C10B	0.0177 (8)	0.0244 (9)	0.0238 (8)	-0.0024 (7)	0.0009 (7)	0.0002 (8)

Geometric parameters (Å, °)

Cl2—C2	1.7525 (19)	С8—С9	1.522 (3)
O6—C6	1.226 (2)	C9—C10	1.525 (2)
N5—C4A	1.361 (2)	C10—C10A	1.500 (3)

N5—C5A	1.384 (2)	C10A—C10B	1.435 (2)
N5—H5	0.837 (19)	C1—H1	0.9500
C1—C10B	1.407 (3)	С3—Н3	0.9500
C1—C2	1.372 (2)	C4—H4	0.9500
C2—C3	1.408 (3)	C7—H7A	0.9900
C3—C4	1.374 (3)	C7—H7B	0.9900
C4—C4A	1.399 (2)	C8—H8A	0.9900
C4A—C10B	1 412 (3)	C8—H8B	0.9900
C5A-C6	1 466 (2)	C9—H9A	0.9900
C5A—C10A	1.389 (3)	C9—H9B	0.9900
C6-C7	1 512 (2)	C10—H10A	0.9900
C7—C8	1 524 (3)	C10—H10B	0.9900
0, 00	1.521(5)		0.9900
C4A—N5—C5A	109.50 (16)	C1C10BC10A	133.14 (17)
C4A—N5—H5	124.8 (14)	C2—C1—H1	121.00
C5A—N5—H5	125.7 (14)	C10B—C1—H1	121.00
C2-C1-C10B	117.39 (17)	С2—С3—Н3	120.00
Cl2—C2—C3	117.57 (13)	C4—C3—H3	120.00
Cl2—C2—C1	119.41 (14)	C3—C4—H4	121.00
C1—C2—C3	123.02 (17)	C4A—C4—H4	121.00
C2—C3—C4	120.45 (16)	С6—С7—Н7А	107.00
C3—C4—C4A	117.35 (17)	С6—С7—Н7В	107.00
N5—C4A—C4	129.78 (18)	С8—С7—Н7А	107.00
N5-C4A-C10B	107.77 (15)	С8—С7—Н7В	107.00
C4—C4A—C10B	122.44 (17)	H7A—C7—H7B	107.00
N5—C5A—C6	116.33 (16)	C7—C8—H8A	109.00
C6—C5A—C10A	134.44 (16)	C7—C8—H8B	109.00
N5-C5A-C10A	109.23 (15)	С9—С8—Н8А	109.00
O6—C6—C7	118.84 (16)	С9—С8—Н8В	109.00
C5A—C6—C7	122.28 (16)	H8A—C8—H8B	108.00
06—C6—C5A	118.86 (16)	C8—C9—H9A	109.00
C6-C7-C8	119.54 (15)	C8—C9—H9B	109.00
C7—C8—C9	114.57 (15)	C10—C9—H9A	109.00
C8-C9-C10	113 70 (15)	C10-C9-H9B	109.00
C9-C10-C10A	116.94 (15)	H9A - C9 - H9B	108.00
C5A - C10A - C10B	105.96 (15)	C9-C10-H10A	108.00
C10-C10A-C10B	122 67 (16)	C9-C10-H10B	108.00
C_{5A} $-C_{10A}$ $-C_{10}$	131 32 (16)	C10A - C10 - H10A	108.00
C4A - C10B - C10A	107 53 (16)	C10A - C10 - H10B	108.00
C1 - C10B - C4A	119 33 (16)	H_{10A} $-C_{10}$ $-H_{10B}$	107.00
	117.55 (10)		107.00
C5A—N5—C4A—C4	-180.00 (18)	N5—C5A—C6—C7	-168.77 (16)
C5A—N5—C4A—C10B	0.65 (19)	C10A—C5A—C6—O6	-169.76 (18)
C4A—N5—C5A—C6	-179.61 (15)	C10A—C5A—C6—C7	12.0 (3)
C4A—N5—C5A—C10A	-0.2 (2)	N5-C5A-C10A-C10	177.14 (17)
C10B—C1—C2—Cl2	-178.65 (13)	N5-C5A-C10A-C10B	-0.37 (19)
C10B—C1—C2—C3	1.6 (3)	C6C5AC10AC10	-3.6 (3)
C2-C1-C10B-C4A	-0.8 (2)	C6C5AC10AC10B	178.93 (18)
C2-C1-C10B-C10A	178.53 (18)	O6—C6—C7—C8	-166.26 (16)

supplementary materials

Cl2—C2—C3—C4	179.40 (14)	C5A—C6—C7—C8	12.0 (3)
C1—C2—C3—C4	-0.8 (3)	C6—C7—C8—C9	-63.1 (2)
C2—C3—C4—C4A	-0.8 (3)	C7—C8—C9—C10	88.01 (18)
C3—C4—C4A—N5	-177 70 (17)	C8—C9—C10—C10A	-52.9 (2)
C3-C4-C4A-C10B	1.6 (3)	C9—C10—C10A—C5A	11.6 (3)
N5-C4A-C10B-C1	178.59 (15)	C9—C10—C10A—C10B	-171.28 (16)
N5-C4A-C10B-C10A	-0.87 (19)	C5A—C10A—C10B—C1	-178 59 (18)
C4—C4A—C10B—C1	-0.8 (3)	C5A—C10A—C10B—C4A	0.75 (19)
C4—C4A—C10B—C10A	179.72 (16)	C10—C10A—C10B—C1	3.6 (3)
N5—C5A—C6—O6	9.5 (2)	C10—C10A—C10B—C4A	-177.02 (15)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4,C4A,C10B ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D····A	<i>D</i> —H··· <i>A</i>
N5—H5…O6 ⁱ	0.837 (19)	2.13 (2)	2.904 (2)	153.2 (19)
С9—Н9А…Обіі	0.99	2.55	3.228 (2)	125
C7—H7 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.99	2.95	3.7969 (19)	144

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*, -*z*+1.